

In the COVID era, computational biology is having a heyday – and machine learning is playing a massive role. With billions upon billions of compounds to search through for any given therapeutic application, strictly brute-force simulations are wildly unfeasible, necessitating more artificially intelligent methods of whittling down the options. Now, researchers from IRB Barcelona’s Structural Bioinformatics and Network Biology lab have developed a deep learning method that predicts the biological activity of any given molecule – even in the absence of experimental data.
The researchers, led by Patrick Aloy, are applying deep machine learning to a massive dataset: the Chemical Checker, which provides processed, harmonized, and integrated bioactivity data on 800,000 small molecules and is also produced by the Structural Bioinformatics and Network Biology lab. In total, any given molecule has 25 bioactivity “spaces,” but for most molecules, data on only a few are known – if that.
Using the new deep learning tool, that’s changing. The Chemical Checker database contains data on all 25 bioactivity spaces from each of those 800,000 molecules, and the tool, having been trained on that data, can predict all the bioactivity spaces of any molecules with incomplete bioactivity data. “The new tool … allows us to forecast the bioactivity spaces of new molecules, and this is crucial in the drug discovery process as we can select the most suitable candidates and discard those that, for one reason or another, would not work,” explained Aloy.
Of course, the prediction isn’t perfect, and assessing molecules with more available data will allow the tool to produce higher-confidence predictions. Some molecules, as well, prove simply more or less difficult for the tool to assess. “All models are wrong, but some are useful,” said Martino Bertoni, first author on the paper describing the research. “A measure of confidence allows us to better interpret the results and highlight which spaces of bioactivity of a molecule are accurate and in which ones an error rate can be contemplated.”
The researchers chose a challenging case for validation: a cancer-related transcription factor that was broadly considered an “undruggable” target. The tool identified 131 compounds that fit the target by predicting their bioactivity spaces, and their ability to degrade the target was experimentally confirmed.
The research described in this article was published as “Bioactivity descriptors for uncharacterized chemical compounds” in the June 2021 issue of Nature Communications. The article was written by Martino Bertoni, Miquel Duran-Frigola, Pau Badia-i-Mompel, Eduardo Pauls, Modesto Orozco-Ruiz, Oriol Guitart-Pla, Víctor Alcalde, Víctor M. Diaz, Antoni Berenguer-Llergo, Isabelle Brun-Heath, Núria Villegas, Antonio García de Herreros and Patrick Aloy. To read it, click here.
June 20, 2025
- Couchbase to be Acquired by Haveli Investments for $1.5B
- Schneider Electric Targets AI Factory Demands with Prefab Pod and Rack Systems
- Hitachi Vantara Named Leader in GigaOm Report on AI-Optimized Storage
- H2O.ai Opens Nominations for 2025 AI 100 Awards, Honoring Most Influential Leaders in AI
June 19, 2025
- ThoughtSpot Named a Leader in the 2025 Gartner Magic Quadrant for Analytics and BI Platforms
- Sifflet Lands $18M to Scale Enterprise Data Observability Offering
- Pure Storage Introduces Enterprise Data Cloud for Storing Data at Scale
- Incorta Connect Delivers Frictionless ERP Data to Databricks Without ETL Complexity
- KIOXIA Targets AI Workloads with New CD9P Series NVMe SSDs
- Hammerspace Now Available on Oracle Cloud Marketplace
- Domino Launches Spring 2025 Release to Streamline AI Delivery and Governance
June 18, 2025
- WEKA Introduces Adaptive Mesh Storage System for Agentic AI Workloads
- Zilliz Launches Milvus Ambassador Program to Empower AI Infrastructure Advocates Worldwide
- CoreWeave and Weights & Biases Launch Integrated Tools for Scalable AI Development
- BigID Launches 1st Managed DPSM Offering for Global MSSPs and MSPs
- Starburst Named Leader and Fast Mover in GigaOm Radar for Data Lakes and Lakehouses
- StorONE Unveils ONEai for GPU-Optimized, AI-Integrated Data Storage
- Cohesity Adds Deeper MongoDB Integration for Enterprise-Grade Data Protection
- Fivetran Report Finds Enterprises Racing Toward AI Without the Data to Support It
- Datavault AI to Deploy AI-Driven Supercomputing for Biofuel Innovation
- Inside the Chargeback System That Made Harvard’s Storage Sustainable
- What Are Reasoning Models and Why You Should Care
- The GDPR: An Artificial Intelligence Killer?
- It’s Snowflake Vs. Databricks in Dueling Big Data Conferences
- Databricks Takes Top Spot in Gartner DSML Platform Report
- Snowflake Widens Analytics and AI Reach at Summit 25
- Why Snowflake Bought Crunchy Data
- Top-Down or Bottom-Up Data Model Design: Which is Best?
- Change to Apache Iceberg Could Streamline Queries, Open Data
- Fine-Tuning LLM Performance: How Knowledge Graphs Can Help Avoid Missteps
- More Features…
- Mathematica Helps Crack Zodiac Killer’s Code
- It’s Official: Informatica Agrees to Be Bought by Salesforce for $8 Billion
- Solidigm Celebrates World’s Largest SSD with ‘122 Day’
- AI Agents To Drive Scientific Discovery Within a Year, Altman Predicts
- DuckLake Makes a Splash in the Lakehouse Stack – But Can It Break Through?
- The Top Five Data Labeling Firms According to Everest Group
- ‘The Relational Model Always Wins,’ RelationalAI CEO Says
- Who Is AI Inference Pipeline Builder Chalk?
- Data Prep Still Dominates Data Scientists’ Time, Survey Finds
- IBM to Buy DataStax for Database, GenAI Capabilities
- More News In Brief…
- Astronomer Unveils New Capabilities in Astro to Streamline Enterprise Data Orchestration
- Yandex Releases World’s Largest Event Dataset for Advancing Recommender Systems
- Astronomer Introduces Astro Observe to Provide Unified Full-Stack Data Orchestration and Observability
- BigID Reports Majority of Enterprises Lack AI Risk Visibility in 2025
- Databricks Unveils Databricks One: A New Way to Bring AI to Every Corner of the Business
- MariaDB Expands Enterprise Platform with Galera Cluster Acquisition
- FICO Announces New Strategic Collaboration Agreement with AWS
- Snowflake Openflow Unlocks Full Data Interoperability, Accelerating Data Movement for AI Innovation
- Databricks Announces Data Intelligence Platform for Communications
- Cisco: Agentic AI Poised to Handle 68% of Customer Service by 2028
- More This Just In…