

Generative AI is taking the world by storm, as organizations discover the myriad ways it can be used to serve and entice customers. With today’s enhancements to Vertex AI, Google Cloud is giving its customers more GenAI capabilities to choose from.
The pace of adoption of GenAI and large language models (LLMs) has been nothing but astonishing since OpenAI rocked the world with the launch of ChatGPT nine months ago. It also put Google in the unconventional position of playing catchup with OpenAI and its partner Microsoft–which is ironic since Google developed the core transformer model technology underpinning LLMs.
Google Cloud has narrowed the gap considerably since it started adding GenAI and LLM capabilities to Vertex AI, its flagship product for enterprise AI. According to June Yang, Google Cloud’s vice president of Cloud AI and industry solutions, the number of GenAI customer accounts in Vertex AI has grown by more than 15x in just the past quarter.
“And the GenAI products we’re seeing on Google Cloud Platform has grown by over 150 times,” Yang added during a press conference last week. “Really, just a staggering amount of growth. We’re very happy to see this type of demand.”
Newcomers to Vertex AI will have a veritable smorgasbord of LLMs and image-generating models to choose from, as the company now boasts more than 100 large foundational models in its Model Garden. PaLM is the hometown favorite, as a Google product, but you can also find Llama2, made by crosstown rival Meta, wandering the Garden. Claude 2, a foundation model developed Anthropic, is another third-party model now available to Vertex users.
An upgrade to PaLM will expand the input length by more than 4x, to 32,000 tokens. That will make it easier for customers to input longer documents and pieces of conversation into Google’s biggest foundational model, Yang says. “One of the key requests we’ve heard from customers is they want a bigger context lens windows so they can input more data,” Yang said.
PaLM also boasts full compatibility with 38 languages, including Arabic, Chinese, Japanese, German, and Spanish, among others. There are more than 100 more languages in private preview for PaLM, Yang added. Codey, a text-to-code model developed by Google, can boast up to 25% better code generation, Yang said. And Imagen, Google’s model for image generation, also boasts better quality output.
In addition to increasing the breadth and quality of foundation models, Google Cloud also announced that Vertex AI Search and Conversation is now generally available.
Vertex AI Search and Conversation utilizes vector search capabilities under the covers to provide a better search experience than keyword-search alone can provide, but without requiring advanced AI skills to integrate the search engine into customer environments. It also brings features like multi-turn search, which provides a more streamlined conversation, and conversation and search summarization.
“Think about this as Google Search for your business data,” Yang said. “You may have seen Google Search’s generative experiences from a consumer side. With Vertex AI Search, you can now offer the same generative AI experiences to your employes, partners, and customers, with built-in low code, multi-model and multi-language capabilities.”
Google Cloud also announced the general availability of Vertex AI extensions, which is set of developer tools within Vertex AI Search and Conversations that connect models to APIs to take action on real-time data.
“With extensions, a developer can now build their own extension or leverage an extension built either by Google or our partners,” Yang said. “And developers can use these extensions to build powerful GenAI application, like digital assistant, search engines, automated workflow, and more.”
The company said it’s developing pre-built extensions that connect Vertex AI to Google Cloud databases services like BigQuery and AlloyDB, the company said. It’s also committed to connecting to third-party NoSQL databases from MongoDB, Redis, and DataStax .
Google Cloud made the Vertex AI announcements at Google Cloud Next, a multi-day conference that’s expected to attract 20,000 people to San Francisco this week.
Related Items:
Duet AI Goes Everywhere in Google’s Cloud
Google Cloud Levels Up Database Services with Cloud SQL Enterprise Plus
Google Cloud Bolsters Data, Analytics, and AI Offerings
June 13, 2025
- PuppyGraph Announces New Native Integration to Support Databricks’ Managed Iceberg Tables
- Striim Announces Neon Serverless Postgres Support
- AMD Advances Open AI Vision with New GPUs, Developer Cloud and Ecosystem Growth
- Databricks Launches Agent Bricks: A New Approach to Building AI Agents
- Basecamp Research Identifies Over 1M New Species to Power Generative Biology
- Informatica Expands Partnership with Databricks as Launch Partner for Managed Iceberg Tables and OLTP Database
- Thales Launches File Activity Monitoring to Strengthen Real-Time Visibility and Control Over Unstructured Data
- Sumo Logic’s New Report Reveals Security Leaders Are Prioritizing AI in New Solutions
June 12, 2025
- Databricks Expands Google Cloud Partnership to Offer Native Access to Gemini AI Models
- Zilliz Releases Milvus 2.6 with Tiered Storage and Int8 Compression to Cut Vector Search Costs
- Databricks and Microsoft Extend Strategic Partnership for Azure Databricks
- ThoughtSpot Unveils DataSpot to Accelerate Agentic Analytics for Every Databricks Customer
- Databricks Eliminates Table Format Lock-in and Adds Capabilities for Business Users with Unity Catalog Advancements
- OpsGuru Signs Strategic Collaboration Agreement with AWS and Expands Services to US
- Databricks Unveils Databricks One: A New Way to Bring AI to Every Corner of the Business
- MinIO Expands Partner Program to Meet AIStor Demand
- Databricks Donates Declarative Pipelines to Apache Spark Open Source Project
June 11, 2025
- What Are Reasoning Models and Why You Should Care
- The GDPR: An Artificial Intelligence Killer?
- Fine-Tuning LLM Performance: How Knowledge Graphs Can Help Avoid Missteps
- It’s Snowflake Vs. Databricks in Dueling Big Data Conferences
- Snowflake Widens Analytics and AI Reach at Summit 25
- Top-Down or Bottom-Up Data Model Design: Which is Best?
- Why Snowflake Bought Crunchy Data
- Inside the Chargeback System That Made Harvard’s Storage Sustainable
- Change to Apache Iceberg Could Streamline Queries, Open Data
- dbt Labs Cranks the Performance Dial with New Fusion Engine
- More Features…
- Mathematica Helps Crack Zodiac Killer’s Code
- It’s Official: Informatica Agrees to Be Bought by Salesforce for $8 Billion
- AI Agents To Drive Scientific Discovery Within a Year, Altman Predicts
- Solidigm Celebrates World’s Largest SSD with ‘122 Day’
- DuckLake Makes a Splash in the Lakehouse Stack – But Can It Break Through?
- The Top Five Data Labeling Firms According to Everest Group
- Who Is AI Inference Pipeline Builder Chalk?
- IBM to Buy DataStax for Database, GenAI Capabilities
- ‘The Relational Model Always Wins,’ RelationalAI CEO Says
- Hex Raises $70M to Power Its Ambition for a Virtuous Cycle of Data Work
- More News In Brief…
- Astronomer Unveils New Capabilities in Astro to Streamline Enterprise Data Orchestration
- Yandex Releases World’s Largest Event Dataset for Advancing Recommender Systems
- Astronomer Introduces Astro Observe to Provide Unified Full-Stack Data Orchestration and Observability
- BigID Reports Majority of Enterprises Lack AI Risk Visibility in 2025
- Gartner Predicts 40% of Generative AI Solutions Will Be Multimodal By 2027
- Databricks Announces Data Intelligence Platform for Communications
- MariaDB Expands Enterprise Platform with Galera Cluster Acquisition
- Databricks Unveils Databricks One: A New Way to Bring AI to Every Corner of the Business
- Databricks Announces 2025 Data + AI Summit Keynote Lineup and Data Intelligence Programming
- FICO Announces New Strategic Collaboration Agreement with AWS
- More This Just In…